Компьютеры. Применение в химии - Книга специалистов из ФРГ посвящена применению вычислительных машин для решения задач из самых различных разделов химии. Приводятся программы решения как типичных расчетных задач из области физической химии, так и нечисленных задач органической химии, в основном на языке БЕЙСИК. Для специалистов в области вычислительной техники и химиков широкого профиля.
Название: Компьютеры. Применение в химии Автор: Эберт К., Эдерер X. Издательство: Мир Год: 1988 Страниц: 415 Формат: DJVU Размер: 2,57 МБ ISBN: 5-03-001176-5 Качество: Отличное
Содержание:
Предисловие редактора перевода Предисловие ко второму изданию Предисловие к первому изданию 1. Введение 1.1. Замечания общего характера 1.2. Анализ задачи 1.3. Важнейшие команды 2. Формулы 2.1. Введение в алгоритмические языки 2.2. Номер строки в БЕЙСИКе 2.3. Изменения в программе 2.4. Обозначение переменных 2.5. Первые элементы языка БЕЙСИК, используемые для расчетов по формулам 2.5.1. Ввод данных 2.5.2. Вывод данных 2.5.3. Оператор присваивания 2.6. Запись чисел 2.7. Арифметические выражения 2.8. Стандартные функции 2.9. Оператор безусловного перехода 2.10. Непосредственный режим 2.11. Расчет площади треугольника по длинам трех сторон 2.12. Расчет средней длины свободного пробега молекул газа 2.13. Распределение молекул идеального газа по скоростям (распределение Максвелла) 2.14. Расчет объемной плотности энергии излучения абсолютно черного тела по формуле Планка 2.15. Перевод градусов Цельсия в градусы Фаренгейта 2.16. Диффузионный потенциал в растворах электролитов 2.17. Скорость истечения газа 3. Ряды 3.1. Геометрическая прогрессия 3.2. Ряды Фурье 3.3. Вычисление теплопроводности по второму закону Фурье 3.4. Суммы по состояниям 3.5. Вычисление числа т методом Монте-Карло 4. Циклы 4.1. Расчет сумм 4.2. Составление таблиц 4.3. Среднее значение и стандартное отклонение 4.4. Интегрирование методом Монте-Карло 4.5. Вычисление брутто-формулы химического соединения по данным элементного анализа 4.6. Оператор условного перехода 4.7. Определение брутто-формулы по пику молекулярного иона в масс-спектрах высокого разрешения 5. Интегрирование 5.1. Интегрирование методом Эйлера 5.2. Вычисление длины эллипса 5.3. Моделирование строения сополимеров 5.3.1. Двоеточие в БЕЙСИКе 5.4. Интегрирование методом Симпсона 5.5. Численное интегрирование с ограничением числа итераций по критерию сходимости 5.6. Мольная теплоемкость металлов по Дебаю 5.7. Расчет второго вириального коэффициента на основе межмолекулярного потенциала 6. Уравнения 6.1. Метод деления отрезка пополам 6.2. Метод Ньютона (метод касательных) 6.3. Метод хорд (правило пропорциональных частей) 6.4. Термо-э.д.с. термопары Ni - Cr/Ni 6.5. Персистентная длина молекулы полимера 6.6. Расчет эффективности разделения при ректификации 6.7. рН растворов слабых кислот 6.8. Метод итераций 7. Переменные с индексами 7.1. Сортировка чисел и слов 7.2. Интегрирование кинетического уравнения первого порядка методом Монте-Карло 7.3. Умножение квадратных матриц 7.4. Алгебра комплексных чисел 7.5. Угол рассеяния Брэгга при дифракции рентгеновского излучения 7.6. Моделирование колонки в газовой хроматографии 7.7. Линейная регрессия 7.8. Линейная регрессия с оценкой отклонения параметров 8. Линейные системы 8.1. Подпрограммы 8.2. Системы линейных уравнений 8.3. Линейная регрессия общего вида 8.4. Обращение квадратной матрицы 8.5. Определение собственных значений матрицы 8.6. Определение числа изомеров 9. Дифференциальные уравнения 9.1. Метод Эйлера 9.2. Улучшенный метод Эйлера 9.3. Метод Рунге - Кутта 9.4. Метод Эйлера для систем дифференциальных уравнений 9.5. Метод Рунге - Кутта для систем дифференциальных уравнений 9.6. Краевая задача 9.7. Гармонический осциллятор - задача на собственные значения 9.8. Уравнения в частных производных 9.9. Стационарные решения уравнений в частных производных 10. Интерполяция 10.1. Метод Лагранжа 10.2. Интерполяция с помощью сплайн-функции 11. Нелинейные системы 11.1. Системы нелинейных уравнений 11.2. Нелинейная регрессия 12. Нечисленные методы обработки данных 12.1. Вывод системы дифференциальных уравнений из кинетической схемы реакции 12.2. Компьютерные игры 12.3. Игра «Жизнь» (Game of Life) 13. Машинное построение графиков 13.1. Узор 13.2. Линейная регрессия с графиком 13.3. График решения дифференциального уравнения 13.4. Изображение поверхностей и тел (3-D-график) 13.5. Контурный график 14. Автоматизированная обработка данных 14.1. Отображение экспериментальных данных 14.2. Быстрая сортировка 14.3. Сплайн-регрессия 14.4. Жесткие системы дифференциальных уравнений Литература Предметный указатель Указатель ключевых слов и символов Указатель программ